Periodicity of chaotic trajectories of single and coupled maps in realizations of finite computer precisions

نویسندگان

  • Shihong Wang
  • Weirong Liu
  • Huaping Lu
  • Jinyu Kuang
  • Gang Hu
چکیده

A fundamental periodicity problem of chaotic trajectories in computer realization with finite computation precision is investigated systematically by taking single and coupled Logistic maps as examples. Low-dimensional chaotic trajectories have rather short periods even with double precision computation, while the period increases rapidly when the number of coupled maps increases. Empirical exponential relations of the period and transient iterations with the computation precisions and the sizes of coupled systems are obtained, which coincide with numerically measured data in wide parameter regions. This understanding is useful for possible applications of chaos, e.g., chaos cryptography in secure communication. PACS numbers: 05.45.-a 05.45.Ra 05.45.Pq

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications

Fundamental problems of periodicity and transient process to periodicity of chaotic trajectories in computer realization with finite computation precision is investigated by taking single and coupled Logistic maps as examples. Empirical power law relations of the period and transient iterations with the computation precisions and the sizes of coupled systems are obtained. For each computation w...

متن کامل

GENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS

In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Chaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses

A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003